1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

(** #<nav><p class="series">Ltac.html</p>
<p class="seriesprev">./LtacPatternMatching.html</p></nav># *)
(** * Mixing Ltac and Gallina for Fun and Profit *)
(** One of the most misleading introduction to Coq is to say that “Gallina is
for programs, while tactics are for proofs.” Indeed, in Coq we construct
terms of given types, always. Terms encodes both programs and proofs about
these programs. Gallina is the preferred way to construct programs, and
tactics are the preferred way to construct proofs.
The key word here is “preferred.” We do not always need to use tactics to
construct a proof term. Conversly, there are some occasions where
constructing a program with tactics become handy. Furthermore, Coq actually
allows for _mixing together_ Ltac and Gallina.
In the #<a href="LtacPatternMatching.html">#previous article of this
series#</a>#, we discuss how Ltac provides two very interesting features:
 With [match goal with] it can inspect its context
 With [match type of _ with] it can pattern matches on types
It turns out these features are more than handy when it comes to
metaprogramming (that is, the generation of programs by programs). *)
(** #<nav id="generatetoc"></nav>#
#<div id="history">site/posts/MixingLtacAndGallina.v</div># *)
(** ** A Tale of Two Worlds, and Some Bridges *)
(** Constructing terms proofs directly in Gallina often happens when one is
writing dependentlytyped definition. For instance, we can write a type safe
[from_option] function (inspired by #<a
href="https://plv.csail.mit.edu/blog/unwrappingoptions.html">#this very
nice writeup#</a>#) such that the option to unwrap shall be accompagnied by
a proof that said option contains something. This extra argument is used in
the [None] case to derive a proof of [False], from which we can derive
anything. *)
Definition is_some {α} (x : option α) : bool :=
match x with Some _ => true  None => false end.
Lemma is_some_None {α} (x : option α)
: x = None > is_some x <> true.
Proof. intros H. rewrite H. discriminate. Qed.
Definition from_option {α}
(x : option α) (some : is_some x = true)
: α :=
match x as y return x = y > α with
 Some x => fun _ => x
 None => fun equ => False_rect α (is_some_None x equ some)
end eq_refl.
(** In [from_option], we construct two proofs without using tactics:
 [False_rect α (is_some_None x equ some)] to exclude the absurd case
 [eq_refl] in conjunction with a dependent pattern matching (if you are
not familiar with this trick: the main idea is to allow Coq to
“remember” that [x = None] in the second branch)
We can use another approach. We can decide to implement [from_option]
with a proof script. *)
Definition from_option' {α}
(x : option α) (some : is_some x = true)
: α.
Proof.
case_eq x.
+ intros y _.
exact y.
+ intros equ.
rewrite equ in some.
now apply is_some_None in some.
Defined.
(** There is a third approach we can consider: mixing Gallina terms, and
tactics. This is possible thanks to the [ltac:()] feature. *)
Definition from_option'' {α}
(x : option α) (some : is_some x = true)
: α :=
match x as y return x = y > α with
 Some x => fun _ => x
 None => fun equ => ltac:(rewrite equ in some;
now apply is_some_None in some)
end eq_refl.
(** When Coq encounters [ltac:()], it treats it as a hole. It sets up a
corresponding goal, and tries to solve it with the supplied tactic.
Conversly, there exists ways to construct terms in Gallina when writing a
proof script. Certains tactics takes such terms as arguments. Besides, Ltac
provides [constr:()] and [uconstr:()] which work similarly to [ltac:()].
The difference between [constr:()] and [uconstr:()] is that Coq will try to
assign a type to the argument of [constr:()], but will leave the argument of
[uconstr:()] untyped.
For instance, consider the following tactic definition. *)
Tactic Notation "wrap_id" uconstr(x) :=
let f := uconstr:(fun x => x) in
exact (f x).
(** Both [x] the argument of [wrap_id] and [f] the anonymous identity function
are not typed. It is only when they are composed together as an argument of
[exact] (which expects a typed argument, more precisely of the type of the
goal) that Coq actually tries to typecheck it.
As a consequence, [wrap_id] generates a specialized identity function for
each specific context. *)
Definition zero : nat := ltac:(wrap_id 0).
(** The generated anonymous identity function is [fun x : nat => x]. *)
Definition empty_list α : list α := ltac:(wrap_id nil).
(** The generated anonymous identity function is [fun x : list α => x]. Besides,
we do not need to give more type information about [nil]. If [wrap_id] were
to be expecting a typed term, we would have to replace [nil] by [(@nil
α)]. *)
(** ** Beware the Automation Elephant in the Room *)
(** Proofs and computational programs are encoded in Coq as terms, but there is
a fundamental difference between them, and it is highlighted by one of the
axiom provided by the Coq standard library: proof irrelevance.
Proof irrelevance states that two proofs of the same theorem (i.e., two
proof terms which share the same type) are essentially equivalent, and can
be substituted without threatening the trustworthiness of the system. From a
formal methods point of view, it makes sense. Even if we value “beautiful
proofs,” we mostly want correct proofs.
The same reasoning does _not_ apply to computational programs. Two functions
of type [nat > nat > nat] are unlikely to be equivalent. For instance,
[add], [mul] or [sub] share the same type, but computes totally different
results.
Using tactics such as [auto] to generate terms which do not live inside
[Prop] is risky, to say the least. For instance, *)
Definition add (x y : nat) : nat := ltac:(auto).
(** This works, but it is certainly not what you would expect:
<<
add = fun _ y : nat => y
: nat > nat > nat
>>
That being said, if we keep that in mind, and assert the correctness of the
generated programs (either by providing a proof, or by extensively testing
it), there is no particular reason not to use Ltac to generate terms when it
makes sens.
Dependentlytyped programming can help here. If we decorate the return type
of a function with the expected properties of the result wrt. the function’s
arguments, we can ensure the function is correct, and conversly prevent
tactics such as [auto] to generate “incorrect” terms. Interested readers may
refer to #<a href="/posts/StronglySpecifiedFunctions.html">#the dedicated
series on this very website#</a>. *)
