#+BEGIN_EXPORT html

Extensible Type-Safe Error Handling in Haskell

February 04, 2018 #+END_EXPORT #+OPTIONS: toc:nil #+TOC: headlines 2 A colleague of mine introduced me to the benefits of [[https://crates.io/crates/error-chain][~error-chain~]], a crate which aims to implement /“consistent error handling”/ for Rust. I found the overall design pretty convincing, and in his use case, the crate really makes its error handling clearer and flexible. I knew /pijul/ uses ~error-chain~ to, but I never had the occasion to dig more into it. At the same time, I have read quite a lot about /extensible effects/ in Functional Programming, for an academic article I have submitted to [[http://www.fm2018.org][Formal Methods 2018]][fn:fm2018]. In particular, the [[https://hackage.haskell.org/package/freer][freer]] package provides a very nice API to define monadic functions which may use well-identified effects. For instance, we can imagine that ~Console~ identifies the functions which may print to and read from the standard output. A function ~askPassword~ which displays a prompt and get the user password would have this type signature: #+BEGIN_SRC haskell askPassword :: Member Console r => Eff r () #+END_SRC Compared to ~IO~, ~Eff~ allows for meaningful type signatures. It becomes easier to reason about function composition, and you know that a given function which lacks a given effect in its type signature will not be able to use them. As a predictable drawback, ~Eff~ can become burdensome to use. Basically, when my colleague showed me its Rust project and how he was using ~error-chain~, the question popped out. *Can we use an approach similar to ~Eff~ to implement a Haskell-flavoured ~error-chain~?* Spoiler alert: the answer is yes. In this post, I will dive into the resulting API, leaving for another time the details of the underlying implementation. Believe me, there is plenty to say. If you want to have a look already, the current implementation can be found on [[https://github.com/lethom/chain][GitHub]]. In this article, I will use several “advanced” GHC pragmas. I will not explain each of them, but I will /try/ to give some pointers for the reader who wants to learn more. [fn:fm2018] If the odds are in my favour, I will have plenty of occasions to write more about this topic. * State of the Art This is not an academic publication, and my goal was primarily to explore the arcane of the Haskell type system, so I might have skipped the proper study of the state of the art. That being said, I have written programs in Rust and Haskell before. ** Starting Point In Rust, ~Result~ is the counterpart of ~Either E T~ in Haskell[fn:either]. You can use it to model to wrap either the result of a function (~T~) or an error encountered during this computation (~E~). Both ~Either~ and ~Result~ are used in order to achieve the same end, that is writing functions which might fail. On the one hand, ~Either E~ is a monad. It works exactly as ~Maybe~ (returning an error acts as a shortcut for the rest of the function), but gives you the ability to specify /why/ the function has failed. To deal with effects, the ~mtl~ package provides ~EitherT~, a transformer version of ~Either~ to be used in a monad stack. On the other hand, the Rust language provides the ~?~ syntactic sugar, to achieve the same thing. That is, both languages provide you the means to write potentially failing functions without the need to care locally about failure. If your function ~B~ uses a function ~A~ which might fail, and want to fail yourself if ~A~ fails, it becomes trivial. Out of the box, neither ~EitherT~ nor ~Result~ is extensible. The functions must use the exact same ~E~, or errors must be converted manually. [fn:either] I wonder if they deliberately choose to swap the two type arguments. ** Handling Errors in Rust Rust and the ~error-chain~ crate provide several means to overcome this limitation. In particular, it has the ~Into~ and ~From~ traits to ease the conversion from one error to another. Among other things, the ~error-chain~ crate provides a macro to easily define a wrapper around many errors types, basically your own and the one defined by the crates you are using. I see several drawbacks to this approach. First, it is extensible if you take the time to modify the wrapper type each time you want to consider a new error type. Second, either you can either use one error type or every error type. However, the ~error-chain~ package provides a way to solve a very annoying limitation of ~Result~ and ~Either~. When you “catch” an error, after a given function returns its result, it can be hard to determine from where the error is coming from. Imagine you are parsing a very complicated source file, and the error you get is ~SyntaxError~ with no additional context. How would you feel? ~error-chain~ solves this by providing an API to construct a chain of errors, rather than a single value. #+BEGIN_SRC rust my_function().chain_err(|| "a message with some context")?; #+END_SRC The ~chain_err~ function makes it easier to replace a given error in its context, leading to be able to write more meaningful error messages for instance. * The ResultT Monad The ~ResultT~ is an attempt to bring together the extensible power of ~Eff~ and the chaining of errors of ~chain_err~. I will admit that, for the latter, the current implementation of ~ResultT~ is probably less powerful, but to be honest I mostly cared about the “extensible” thing, so it is not very surprising. This monad is not an alternative to neither Monad Stacks a la mtl nor to the ~Eff~ monad. In its current state, it aims to be a more powerful and flexible version of ~EitherT~. ** Parameters As often in Haskell, the ~ResultT~ monad can be parameterised in several ways. #+BEGIN_SRC haskell data ResultT msg (err :: [*]) m a #+END_SRC - ~msg~ is the type of messages you can stack to provide more context to error handling - ~err~ is a /row of errors/[fn:row], it basically describes the set of errors you will eventually have to handle - ~m~ is the underlying monad stack of your application, knowing that ~ResultT~ is not intended to be stacked itself - ~a~ is the expected type of the computation result [fn:row] You might have notice ~err~ is of kind ~[*]~. To write such a thing, you will need the [[https://www.schoolofhaskell.com/user/konn/prove-your-haskell-for-great-safety/dependent-types-in-haskell][DataKinds]] GHC pragmas. ** ~achieve~ and ~abort~ The two main monadic operations which comes with ~ResultT~ are ~achieve~ and ~abort~. The former allows for building the context, by stacking so-called messages which describe what you want to do. The latter allows for bailing on a computation and explaining why. #+BEGIN_SRC haskell achieve :: (Monad m) => msg -> ResultT msg err m a -> ResultT msg err m a #+END_SRC ~achieve~ should be used for ~do~ blocks. You can use ~~ to attach a contextual message to a given computation. The type signature of ~abort~ is also interesting, because it introduces the ~Contains~ typeclass (e.g., it is equivalent to ~Member~ for ~Eff~). #+BEGIN_SRC haskell abort :: (Contains err e, Monad m) => e -> ResultT msg err m a #+END_SRC This reads as follows: /“you can abort with an error of type ~e~ if and only if the row of errors ~err~ contains the type ~e~.”/ For instance, imagine we have an error type ~FileError~ to describe filesystem-related errors. Then, we can imagine the following function: #+BEGIN_SRC haskell readContent :: (Contains err FileError, MonadIO m) => FilePath -> ResultT msg err m String #+END_SRC We could leverage this function in a given project, for instance to read its configuration files (for the sake of the example, it has several configuration files). This function can use its own type to describe ill-formed description (~ConfigurationError~). #+BEGIN_SRC haskell parseConfiguration :: (Contains err ConfigurationError, MonadIO m) => String -> String -> ResultT msg err m Configuration #+END_SRC To avoid repeating ~Contains~ when the row of errors needs to contains several elements, we introduce ~:<~[fn:top] (read /subset or equal/): #+BEGIN_SRC haskell getConfig :: ( '[FileError, ConfigurationError] :< err , MonadIO m) => ResultT String err m Configuration getConfig = do achieve "get configuration from ~/.myapp directory" $ do f1 <- readContent "~/.myapp/init.conf" "fetch the main configuration" f2 <- readContent "~/.myapp/net.conf" "fetch the net-related configuration" parseConfiguration f1 f2 #+END_SRC You might see, now, why I say ~ResultT~ is extensible. You can use two functions with totally unrelated errors, as long as the caller advertises that with ~Contains~ or ~:<~. [fn:top] If you are confused by ~:<~, it is probably because you were not aware of the [[https://ocharles.org.uk/blog/posts/2014-12-08-type-operators.html][TypeOperators]] before. Maybe it was for the best. :D ** Recovering by Handling Errors Monads are traps, you can only escape them by playing with their rules. ~ResultT~ comes with ~runResultT~. #+BEGIN_SRC haskell runResultT :: Monad m => ResultT msg '[] m a -> m a #+END_SRC This might be surprising: we can only escape out from the ~ResultT~ if we do not use /any errors at all/. In fact, ~ResultT~ forces us to handle errors before calling ~runResultT~. ~ResultT~ provides several functions prefixed by ~recover~. Their type signatures can be a little confusing, so we will dive into the simpler one: #+BEGIN_SRC haskell recover :: forall e m msg err a. (Monad m) => ResultT msg (e ': err) m a -> (e -> [msg] -> ResultT msg err m a) -> ResultT msg err m a #+END_SRC ~recover~ allows for /removing/ an error type from the row of errors, To do that, it requires to provide an error handler to determine what to do with the error raised during the computation and the stack of messages at that time. Using ~recover~, a function may use more errors than advertised in its type signature, but we know by construction that in such a case, it handles these errors so that it is transparent for the function user. The type of the handler is ~e -> [msg] -> ResultT msg err m a~, which means the handler /can raise errors if required/. ~recoverWhile msg~ is basically a synonym for ~achieve msg $ recover~. ~recoverMany~ allows for doing the same with a row of errors, by providing as many functions as required. Finally, ~recoverManyWith~ simplifies ~recoverMany~: you can provide only one function tied to a given typeclass, on the condition that the handling errors implement this typeclass. Using ~recover~ and its siblings often requires to help a bit the Haskell type system, especially if we use lambdas to define the error handlers. Doing that is usually achieved with the ~Proxy a~ dataype (where ~a~ is a phantom type). I would rather use the TypeApplications[fn:tap] pragma. #+BEGIN_SRC haskell recoverManyWith @[FileError, NetworkError] @DescriptiveError (do x <- readFromFile f y <- readFromNetwork socket printToStd x y) printErrorAndStack #+END_SRC The ~DecriptiveError~ typeclass can be seen as a dedicated ~Show~, to give textual representation of errors. It is inspired by the macros of ~error_chain~. We can start from an empty row of errors, and allows ourselves to use more errors thanks to the ~recover*~ functions. [fn:tap] The [[https://medium.com/@zyxoas/abusing-haskell-dependent-types-to-make-redis-queues-safer-cc31db943b6c][TypeApplications]] pragmas is probably one of my favourites. When I use it, it feels almost like if I were writing some Gallina. * ~cat~ in Haskell using ResultT ~ResultT~ only cares about error handling. The rest of the work is up to the underlying monad ~m~. That being said, nothing forbids us to provide fine-grained API for, e.g. Filesystem-related functions. From an error handling perspective, the functions provided by Prelude (the standard library of Haskell) are pretty poor, and the documentation is not really precise regarding the kind of error we can encounter while using it. In this section, I will show you how we can leverage ~ResultT~ to *(i)* define an error-centric API for basic file management functions and *(ii)* use this API to implement a ~cat~-like program which read a file and print its content in the standard output. ** (A Lot Of) Error Types We could have one sum type to describe in the same place all the errors we can find, and later use the pattern matching feature of Haskell to determine which one has been raised. The thing is, this is already the job done by the row of errors of ~ResultT~. Besides, this means that we could raise an error for being not able to write something into a file in a function which /opens/ a file. Because ~ResultT~ is intended to be extensible, we should rather define several types, so we can have a fine-grained row of errors. Of course, too many types will become burdensome, so this is yet another time where we need to find the right balance. #+BEGIN_SRC haskell newtype AlreadyInUse = AlreadyInUse FilePath newtype DoesNotExist = DoesNotExist FilePath data AccessDeny = AccessDeny FilePath IO.IOMode data EoF = EoF data IllegalOperation = IllegalRead | IllegalWrite #+END_SRC To be honest, this is a bit too much for the real life, but we are in a blog post here, so we should embrace the potential of ~ResultT~. ** Filesystem API By reading the [[https://hackage.haskell.org/package/base-4.9.1.0/docs/System-IO.html][System.IO]] documentation, we can infer what our functions type signatures should look like. I will not discuss their actual implementation in this article, as this requires me to explain how `IO` deals with errors itself (and this article is already long enough to my taste). You can have a look at [[https://gist.github.com/lethom/c669e68e284a056dc8c0c3546b4efe56][this gist]] if you are interested. #+BEGIN_SRC haskell openFile :: ( '[AlreadyInUse, DoesNotExist, AccessDeny] :< err , MonadIO m) => FilePath -> IOMode -> ResultT msg err m Handle #+END_SRC #+BEGIN_SRC haskell getLine :: ('[IllegalOperation, EoF] :< err, MonadIO m) => IO.Handle -> ResultT msg err m Text #+END_SRC #+BEGIN_SRC haskell closeFile :: (MonadIO m) => IO.Handle -> ResultT msg err m () #+END_SRC ** Implementing ~cat~ We can use the ~ResultT~ monad, its monadic operations and our functions to deal with the file system in order to implement a ~cat~-like program. I tried to comment on the implementation to make it easier to follow. #+BEGIN_SRC haskell cat :: FilePath -> ResultT String err IO () cat path = -- We will try to open and read this file to mimic -- `cat` behaviour. -- We advertise that in case something goes wrong -- the process. achieve ("cat " ++ path) $ do -- We will recover from a potential error, -- but we will abstract away the error using -- the `DescriptiveError` typeclass. This way, -- we do not need to give one handler by error -- type. recoverManyWith @[Fs.AlreadyInUse, Fs.DoesNotExist, Fs.AccessDeny, Fs.IllegalOperation] @(Fs.DescriptiveError) (do f <- Fs.openFile path Fs.ReadMode -- `repeatUntil` works like `recover`, except -- it repeats the computation until the error -- actually happpens. -- I could not have used `getLine` without -- `repeatUntil` or `recover`, as it is not -- in the row of errors allowed by -- `recoverManyWith`. repeatUntil @(Fs.EoF) (Fs.getLine f >>= liftIO . print) (\_ _ -> liftIO $ putStrLn "%EOF") closeFile f) printErrorAndStack where -- Using the `DescriptiveError` typeclass, we -- can print both the stack of Strings which form -- the context, and the description of the generic -- error. printErrorAndStack e ctx = do liftIO . putStrLn $ Fs.describe e liftIO $ putStrLn "stack:" liftIO $ print ctx #+END_SRC The type system of ~cat~ teaches us that this function handles any error it might encounter. This means we can use it anywhere we want… in another computation inside ~ResultT~ which might raise errors completely unrelated to the file system, for instance. Or! We can use it with ~runResultT~, escaping the ~ResultT~ monad (only to fall into the ~IO~ monad, but this is another story). * Conclusion For once, I wanted to write about the /result/ of a project, instead of /how it is implemented/. Rest assured, I do not want to skip the latter. I need to clean up a bit the code before bragging about it.